Position Paper

Regenerative Injection Therapy (RIT):
Effectiveness and Appropriate Usage

By

The Florida Academy of Pain Medicine (FAPM)

Position Paper Committee Members
Felix S. Linetsky, M.D.
Kenneth Botwin, M.D.
Lawrence Gorfine, M.D.
Gary W. Jay, M.D.
Bach McComb, D.O.
Raphael Miguel, M.D.
Asya Mikulinksy, M.D.
Winston Parris, M.D.
Sandford Pollak, D.O.
Albert Ray, M.D.
Lloyd Saberski, M.D.
Peter Taraschi, D.O.
Francisco Torres, M.D.
Andrea Trescot, M.D.
DEFINITION OF RIT

Regenerative Injection Therapy (RIT) is an interventional technique for treatment of chronic pain due to connective tissue diathesis by induction of collagen chemomodulation though inflammatory, proliferative and regenerative/reparative responses mediated by multiple growth factors. (18, 25, 49, 50, 92, 93, 113, 114)

INTRODUCTION

The purpose of this positional paper is:
1. To inform/familiarize the members of FAPM and the medical community at large regarding the validity of an under-utilized, type-specific treatment for chronic musculoskeletal pain related to connective tissue pathology.
2. To outline common indications and conditions treated with RIT, as well as contraindications thereto.
3. To encourage the use of RIT in the treatment of appropriate painful pathology of the connective tissue.

METHODOLOGY

To determine the validity of RIT/prolotherapy, a position paper committee of interventional pain physicians was formed and undertook a comprehensive review of pertinent literature. The committee reviewed 78 specific articles and nine text books, as well as 51 relevant articles and chapters from other text books.

FINDINGS

From 1937 through 2000, more than forty authors reported case studies, retrospective, prospective and animal experiment studies that evaluated the results of treatment with RIT. The calculated number of patients reported in those studies exceeded 530,000. Improvement in terms of return to work and previous functional/occupational activities was reported in 48% to 82% of the patients. The resolution of pain symptomatology was evaluated differently in various studies and ranged from zero to 100%. Complications included 28 pneumothoraces, two requiring chest tubes, 24 allergic reactions, one grand mal seizure, and one aseptic meningitis.

The findings of the FAPM committee substantially contrast with the position of the Department of Health and Human Services (DHHS), Florida Workmen’s Compensation, and Medicare guidelines. The committee recommends consideration of the use of RIT as a type-specific treatment for post-traumatic degenerative, overuse and painful conditions of the musculoskeletal system related to pathology of the connective tissue.
For decades, a small group of allopathic and osteopathic physicians has been practicing the methodology known as Regenerative Injection Therapy (RIT), also known as known in the past as prolotherapy. Pilot, retrospective, open face prospective, and double blind placebo controlled studies have clearly indicated RIT’s effectiveness in the treatment of chronic musculoskeletal pain arising from post-traumatic and degenerative changes in connective tissue such as ligaments, tendons, fascia, and intervertebral discs. (4, 5, 8-10, 12, 74-17, 20-22, 26-28, 35-36, 38-69, 73-83, 88-99, 101-104, 106-111, 113-118, 120-122, 124-128, 133-135)

Clinical and experimental electron microscopic studies have proven that structurally the newly formed connective tissue had biomechanical properties similar to those of normal ligaments and tendons. (78, 94, 99, 110)

Preliminary results of clinical prospective trials for chemonucleo-annuloplasty with proliferation-causing substances show significant promise. (35, 36, 81, 97)

The literature dealing with RIT has been evaluated. This information, in association with extensive clinical experience has found RIT to be an effective therapy for a number of chronic pain conditions. This position paper reviews the clinical and pathophysiological aspects of RIT. The Florida Academy of Pain Medicine endorses RIT when utilized appropriately for the treatment of specific chronic pain entities.

I. RIT MECHANISM OF ACTION

The RIT mechanism of action is complex and multifaceted. Six identified components include:
1) The mechanical transection of cells and matrix induced by the needle, causes cellular damage, stimulating an inflammatory cascade. (8, 18-20, 93, 113, 114, 118, 119, 122)
2) Compression of cells by the extracellular volume of the injected solution stimulates intracellular growth factors. (84-86, 93, 113)
3) Chemomodulation of collagen through inflammatory proliferative, regenerative/reparative responses induced by the chemical properties of the proliferants and mediated by cytokines and multiple growth factors. (7, 18, 24, 45, 49-53, 84-86, 93, 113)
4) Chemoneuromodulation of peripheral nociceptors and antidromic, orthodromic, sympathetic and axon reflex transmissions. (49, 57-64)
5) Modulation of local hemodynamics with changes in intraosseous pressure leading to the reduction of pain. Empirical observations suggest that a dextrose/lidocaine combination has a much more prolonged action than lidocaine alone. (57-64, 123, 129, 138)
6) A temporary repetitive stabilization of the painful hypermobile joints, induced by the inflammatory response to the proliferants, provides a better environment for regeneration and repair of affected ligaments and tendons. (38, 39, 49-55, 120, 121, 124, 127)

II. PUTATIVE PAIN GENERATING STRUCTURES ADDRESSED BY RIT

(1-45, 47-69, 71, 73-86, 89-93, 98-104, 106-111, 113-122, 124-128)

1) Ligaments: Intra-articular, periarticular, capsular
2) Tendons
3) Fascia
4) Enthesis: the zone of insertion of ligament, tendon or articular capsule to bone
5) Intervertebral discs. Note: outer layers of the annulus represent a typical enthesis.
III. TISSUE PATHOLOGY APPROPRIATELY TREATED WITH RIT

1) Sprain: Ligamentous injury at the fibro-osseous junction or intersubstance disruption secondary to sudden or severe twisting of a joint with stretching or tearing of ligaments. (24, 71, 86, 100)

2) Strain: Muscle/tendon injury at the fibromuscular or fibro-osseous interface. When concerned with peripheral muscles and tendons, sprains and strains are identified as separate injuries and in three stage gradations: first, second and third degree sprain and similarly for strain. No consensus exists among authors, and the definitions are quite vague, regarding vertebral and paravertebral ligaments and tendons. (24, 71, 86, 100)

3) Enthesopathy: A painful degenerative pathological process that results in deposition of poorly organized tissue, degeneration and tendinosis at the fibro-osseous interface and transition towards loss of function. (18, 24, 71, 86, 93, 101)

4) Tendinosis/Ligamentosis: A focal area of degenerative changes due to failure of cell matrix adaptation to excessive load and tissue hypoxia with a strong tendency toward chronic pain and dysfunction. (71, 80, 84-86, 93, 112, 114, 119)

5) Pathologic Ligament Laxity: a post-traumatic or congenital condition leading to painful hypermobility of the axial and peripheral joints. (7, 8, 38-43, 47-54)

IV. INDICATIONS FOR RIT

1. Chronic pain from ligaments or tendons secondary to sprains or strains.
2. Pain from overuse or occupational conditions known as “Repetitive Motion Disorders,” i.e., neck and wrist pain in typists and computer operators, "tennis" and "golfers" elbows and chronic supraspinatus tendinosis.
3. Chronic postural pain of the cervical, thoracic, lumbar and lumbosacral regions.
4. Painful recurrent somatic dysfunctions secondary to ligament laxity that improves temporarily with manipulation. Painful hypermobility and subluxation at given peripheral or spinal articulation(s) or mobile segment(s) accompanied by a restricted range of motion at reciprocal segment(s).
5. Thoracic and lumbar vertebral compression fractures with a wedge deformity that exert additional stress on the posterior ligamento-tendinous complex.
6. Recurrent painful subluxations of ribs at the costotransverse, costovertebral and/or costosternal articulations.
7. Osteoarthritis of axial and peripheral joints, spondylosis, spondylolysis and spondylolisthesis
8. Painful cervical, thoracic, lumbar, lumbosacral and sacroiliac instability secondary to ligament laxity.
9. Intolerance to NSAIDs, steroids or opiates. RIT may be the treatment of choice if the patient fails to improve after physical therapy, chiropractic or osteopathic manipulations, steroid injections or radiofrequency denervation, or surgical interventions in the aforementioned conditions, or if such modalities are contraindicated.
V. SYNDROMES AND DIAGNOSTIC ENTITIES, CAUSED BY LIGAMENT AND TENDON PATHOLOGY, THAT HAVE BEEN SUCCESSFULLY TREATED WITH RIT

(4, 5, 8-22, 26-32, 34-70, 74-85, 87-103, 105-115, 119-121, 123-127, 131-134)

1) Cervicocranial Syndrome
 (cervicogenic headaches, secondary to ligament sprain and laxity, atlantoaxial and atlanto-occipital joint sprains, mid cervical zygoapophyseal sprains)
2) Temporomandibular Pain and Muscle Dysfunction Syndrome
3) Barre-Lieou Syndrome
4) Torticollis
5) Cervical segmental dysfunctions
6) Cervicobrachial Syndrome
 (shoulder/neck pain)
7) Hyperextension/Hyperflexion injury Syndromes
8) Cervical, Thoracic and Lumbar Zygoapophyseal Syndromes
9) Cervical, Thoracic and Lumbar Sprain/Strain Syndrome
10) Costo-transverse joint pain
11) Costovertebral arthrosis/dysfunction
12) Slipping rib syndrome
13) Sternoclavicular arthrosis and repetitive strain
14) Thoracic segmental dysfunction
15) Tietze's Syndrome/costochondritis/chondrosis
16) Costosternal arthrosis
17) Xiphoidalgia syndrome
18) Acromioclavicular sprain/arthrosis
19) Shoulder hand syndrome
20) Recurrent shoulder dislocations
21) Scapulothoracic crepitus
22) Iliocostalis Friction Syndrome
23) Iliac Crest Syndrome
24) Iliolumbar syndrome
25) Internal lumbar disc disruption
26) Interspinous pseudoarthrosis (Baastrup’s Disease)
27) Lumbar instability
28) Lumbar ligament sprain
29) Spondylolysis
30) Sacroiliac joint pain
31) Sacroccygeal joint pain
32) Gluteal tendonosis
33) Trochanteric tendonosis
34) Myofascial Pain Syndromes
35) Ehlers-Danlos Syndrome
36) Osgood-Schlatter disease
37) Ankylosing Spondylitis (Marie-Strumpell disease)
38) Failed Back Syndrome
39) Fibromyalgia Syndrome
40) Foot and/or ankle:
 - Sinus Tarsi Syndrome
 - Metatarsalgia
 - Chronic Ankle Sprain
 - Instability
 - Laxity of ligaments
VI. CONTRAINDICATIONS TO RIT

1. Allergy to anesthetic or proliferant solutions or their ingredients such as dextrose, sodium morrhuate or phenol.
2. Acute non-reduced subluxations or dislocations.
3. Acute arthritis (septic or post-traumatic with hemarthrosis)
4. Acute bursitis or tendinitis
5. Capsular pattern shoulder and hip designating acute arthritis accompanied by tendinitis.
6. Acute gout or rheumatoid arthritis
7. Recent onset of a progressive neurologic deficit including but not limited to (severe intractable cephalgia, unilaterally dilated pupil, bladder dysfunction, bowel incontinence, etc).
8. Requests for a large quantity of sedation and/or narcotics before and after treatment.
9. Paraspinal neoplastic lesions involving the musculature and osseous structures.
10. Severe exacerbation of pain or lack of improvement after local anesthetic blocks.

VII. COMMONLY UTILIZED SOLUTIONS

The most common solutions are dextrose based. Dilutions can be made with local anesthetic, for example, 1 ml of 50% dextrose mixed with 3 ml of 1% lidocaine. A gradual progression to 25% Dextrose solution has also been utilized. (27, 50, 93, 113, 114)

For intra-articular injection of the knee, 25% dextrose solution was utilized for decades. (50) Recently, a 10% Dextrose solution has been investigated and also proven to be effective. (115)

5% sodium morrhuate is a mixture of sodium salts of saturated and unsaturated fatty acids of cod liver oil and 2% benzyl alcohol. Note that the benzyl alcohol chemically is very similar to phenol and acts as a local anesthetic and preservative. (8, 50, 93, 101, 124)

Dextrose phenol glycerine solution consists of 25% dextrose, 2.5% phenol and 25% glycerine and is referred to as DPG or P2G. In all referenced studies, it was diluted with a local anesthetic of the practitioner’s choice prior to injection. Dilution reported ratios are 1:1, 1:2 and 2:3. (5, 20-22, 26, 28, 50, 78-80, 108-110)

6% phenol in glycerine solution was utilized at donor harvest sites of the iliac crests for neurolytic and proliferative responses. (95, 135)

Other solutions utilized include pumice suspension, tetracycline, a mixture of chondroitin sulfate, glucosamine sulfate and dextrose. (14, 36, 37, 42-44, 50, 81)
VIII. CONCLUSIONS

1) RIT (known in the past as Prolotherapy) is a valuable method of treatment for correctly diagnosed chronic painful conditions of the locomotive systems.

2) Thorough familiarity of the physician with normal, pathologic, cross-sectional and clinical anatomy, as well as anatomical variations and functions are necessary to utilize this technique appropriately.

3) Current literature supports manipulation under local joint anesthesia and a series of local anesthetic blocks for diagnosis of somatic pain.

4) Use of RIT in an ambulatory setting is an acceptable standard of care in the community.

5) Current literature suggests that NSAIDs and steroid preparations have limited utility in chronic painful overuse conditions and in degenerative painful conditions of ligaments and tendons. However, they are occasionally helpful to curb a significant inflammatory reaction to proliferants. Microinterventional regenerative techniques and proper rehabilitation up to six months or a year supported with mild opioid analgesics may be more appropriate.

IX. SUMMARY

RIT is a safe and effective treatment modality that is very useful in a significant number of pain syndromes arising from ligament and tendon diathesis, as well as other clearly delineated pain problems.

Physicians who use RIT must be knowledgeable in clinical anatomy and function and should be properly trained in this technique via a combination of seminars/workshops, apprenticeships or visiting fellowships in order to safely and effectively utilize this treatment. The Florida Academy of Pain Medicine endorses RIT when administered appropriately for the treatment of specific chronic pain entities.
REFERENCES FOR RIT POSITION PAPER

3. Ashton, I. et al "Morphological basis for back pain: The demonstration of nerve fibers and
neuropeptides in the lumbar facet joint capsule but not in the ligamentum flavum; Journal of
Orthopaedic Research; 10:72-78, Raven Press LTD; New York; 1992
American Osteopathic Association; 45:3; 101-109; Nov 1945
5. Barbor, R. "A treatment for chronic low back pain"; Proceedings from the IV International Congress
of Physical Medicine; Paris; September 6-11, 1964
zygapophyseal joints": New England Journal of Medicine; 330:15; 1047-1050; April 14, 1994
Principles and Practice (Vol 1), Philadelphia, PA, Saunders: 1994
8. Biegeleisen, H.I. Varicose veins, related diseases and sclerotherapy: A guide for practitioners; Eden
Press; 1984
9. Blaschke, J. Conservative management of intervertebral disk injuries; J. of OK State Med Assoc; 54:9:
Sept 1961
10. Blumenthal, L. “Injury to the cervical spine as a cause of headache”; Postgraduate Medicine; Vol
56:3; September 1974
11. Bogduk, N. Clinical anatomy of the lumbar spine and sacrum, third edition; Churchill Livingstone;
1997
Medicine;3:155-157; 1988
of Orthopaedic Medicine; 18:1:2-4; 1996
14. Chase, R. "Basic sclerotherapy"; Osteopathic Annals; December 1978
15. Coleman, A. "physician electing to treat by prolotherapy alters the method at his peril"; J of the
National Medical Assoc; 60:4: 346-348; July 1968
lumbar spine by Heflet, A., Gruoble L. and David M. 1972
c.0; 1988
20. Cyriax, J. Textbook of orthopaedic medicine, Volume one diagnosis of soft tissue lesion; Bailliere
Tindall; London; 1982
fibroblasts submitted to combined growth factors"; J of Orth Research; 14: p200-208; 1996
25. Dorman, T. et al Diagnosis and injection techniques in orthopedic medicine, Williams and Wilkins,
publisher, 1991
26. Dorman, T. Storage and release of elastic energy in the pelvis: dysfunction, diagnosis and treatment,
as published in Low back pain and its relation to the sacroiliac joint, San Diego, CA 1992
1995
29. Dreyfuss, P. et al "Atlanto-occipital and lateral atlanto-axial joint pain patterns”; Spine: 19:10; 1125-
1131; 1994
19:7; 807-811; 1994
35. Eek, B. New directions in the treatment of disc pain as in Diagnosis and treatment of discogenic pain international spinal injection society 4th annual meeting; Vancouver; BC; Canada; pp 47-48; August 16, 1996
38. Gedney, E. Special technic hypermobile joint: a preliminary report, Osteopathic profession, p 30-31 June 1937
41. Gedney, E. Use of sclerosing solution may change therapy in vertebral disk problem, The osteopathic profession; pp. 34, 38 and 39. 1113 April 1952
42. Gedney, E. Technic for sclerotherapy in the management of hypermobile sacroiliac; The Osteopathic Profession; 16-19 and 37-38; August 1952
43. Gedney, E. Progress report on use of sclerosing solutions in low back syndromes. The Osteopathic Profession; 18-21, 40-44 August 1954
46. Grayson, M. Sterile meningitis after lumbosacral ligament sclerosing injections; The Journal of orthopaedic medicine: 16;3; 1994
47. Green, S. "Hypermobility of joints: causes, treatment and technic of sclerotherapy", The Osteopathic Profession; pp 26-27 and pp 42-47; April 1956
48. Green, S. "The study of ligamentous tissue is regarded as key to sclerotherapy"; The Osteopathic Prof; pp 26-29; January 1958
52. Hackett, G. and Henderson, D. Joint stabilization: an experimental, histologic study with comments on the clinical application in ligament proliferation, American Journal of Surgery; 89:968-973 May 1955
57. Hackett, G. "Prolotherapy in low back pain from ligament relaxation and bone dystrophy", Clinical Medicine 7:12, pp 2551-2561 Dec 1960
58. Hackett, G. et al "Back pain following trauma and disease prolotherapy", military medicine; pp 517-525; July 1961
68. Hirschberg, G. et al "Treatment of the chronic iliolumbar syndrome by infiltration of the iliolumbar ligament", Western J. of Medicine; 136: 372-374; Apr 1982
70. Hunt, W "Complications following injections of sclerosing agent to precipitate fibro-osseous proliferation": J Neurosurg; 18:461-465; 1961
71. Jozsa, L. Human tendons, anatomy, physiology and pathology, Human Kinetics, Champaign, IL; 1997
72. Kang, H. et al "Ideal concentration of growth factors in rabbit's flexor tendon culture": Yonsei medical journal: 40:1;pp 26-29; 1999
73. Kayfetz, D. et al "Whiplash injury and other ligamentous headache-its management with prolotherapy"; Headache; Vol III: No 1; Apr 1963
84. Leadbetter, W. Cell-matrix response in tendon injury; Clin sports med 11; 533-578; 1992
85. Leadbetter, W. Anti-inflammatory therapy and sport injury: the role of non-steroidal drugs and corticosteroid injections; Clin sports med 14; 353-410; 1995
88. Leedy, R. et al "Analysis of 50 low back cases 6 years after treatment by joint ligament sclerotherapy"; Osteo Med;6:1976
89. Leedy, R. "Applications of sclerotherapy to specific problems"; Osteopathic Medicine; pp.79-81,85,86,89-91, 94-96; Aug 1977
90. Leriche, R. Effets de l’anesthesia a la novocaine des ligaments et des insertion tenineuses periarctuales dans certaines maladies articulaires et dans les vices de positions fonctionnels des articulations, Gaz D. Hop., 103:1294; 1930
96. Marui, T. et al "Effect of growth factors on matrix synthesis by ligament fibroblasts": J. or ortho research: 15:pp.18-23; 1997
97. Massie, J. et al Is it possible to stimulate fibroplasia within the intervertebral disc?; J of Ortho Med: 15:3; p.83; 1993
100. Merskey, H. et al Classification of Chronic Pain, Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms (2nd Ed), IASP Press, Seattle; 1994
102. Mooney, V. Sclerotherapy in back pain? Yes if clinician is skilled; J of Musculoskeletal medicine; p.13; Jan 1993
112. Ranney, D. Chronic musculoskeletal injuries in the workplace, W.B. Saunders, Co.; 1997
113. Reeves, K.D. Prolotherapy: Basic Science Clinical Studies and Technique as in Lennard Pain Procedures in Clinical practice; Hanley and Belfus Inc; Philadelphia; 2000
115. Reeves, K.D. et al Randomized prospective double-blind placebo-controlled study of dextrose prolotherapy for knee osteoarthritis with or without ACL laxity, Ailern Ther Health Med, 6(2) 68-74, pp.77-80, March 2000
118. Riddle, P. Injection treatment, Philadelphia, PA, W.B. Saunders Co.; 1940
119. **Roosth, H.** Low back and leg pain attributed to gluteal tendinosis; *Orthopedics today*; Nov 1991
120. **Schultz, L.** "A treatment for subluxation of the temporomandibular joint"; *Journal of AMA*; Sept 256, 1937
122. **Schwartz, R.** et al Prolotherapy: A literature review and retrospective study; *J Neurol Orthop Med Surg*; 1991
123. **Shevelev, A.** et al Intersosseous receptor system as the modulator of trigeminal afferent reactions; *Worldwide Pain Conference; Pain and Neuromodulation: the new millennium* (hosted by the International and American Neuromodulation societies); Proceedings of The 9th World Congress: The Pain clinic; Hosted by the World Society of Pain Clinicians; San Francisco, CA p 34; 715-21/2000
124. **Shuman, D.** Low back pain, Philadelphia, PA, David Shuman publisher; 1958
125. **Shuman, D.** Luxation recurring in shoulder; *Osteopathic Profession* 8:6; p.11-13; 1941
126. **Shuman, D.** Sclerotherapy--injections may be best way to restrengthen ligaments in case of slipped knee cartilage, *Osteopathic profession*, Mar 1949
129. **Sokov, E.** et al Are herniated disks the main cause of low back pain; *Worldwide Pain Conference; Pain and neuromodulation: the new millennium* (hosted by the International and American Neuromodulation societies); Proceedings of The 9th World Congress: The Pain clinic; Hosted by the World Society of Pain Clinicians; San Francisco, CA p 74; 715-21/2000
130. **Spindler, K.** et al "Patellar tendon and anterior cruciate ligament have different mitogenic responses to platelet-derived growth factor and transforming growth factor b"; *J or Ortho research*: 14:542-546; 1996
133. **Vanderschot, L.** Trigger pints vs. acupuncture points; *Am J.*
137. **Yahia, H.** et al A light and electron microscopic study of spinal ligament innervation; *Z. mikrosk. - Anat.*102; 1989